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Abstract 

Operating flexibility enables firms to promptly curtail further losses during challenging 

times, thereby reducing their risk of stock price crashes. We for this insight by studying 

a real-options asset-pricing model. Consistent with the loss-curtailment mechanism, the 

results from our empirically grounding analytics reveal that operating flexibility 

mitigates crash risk, especially during periods of recession. Moreover, the effect is more 

pronounced for firms with lower productivity, lower profitability, or higher operating 

leverage. Using U.S. data between 1961 and 2020, we document a relationship between 

firms’ ability to downsize operations and firm performance that varies in economically 

sensible ways: a negative correlation exists between the operation downscale flexibility 

and firm stock price crash risk, and this relation is more significant during the longer and 

severer recessions.  
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1. Introduction 

Can firms’ flexibility in downsizing their operations help them survive during the economic downturns? 

In periods of low profitability during economic recessions, firms’ ability to cut operations costs help 

protect firm value by curtailing further losses, thus reducing the likelihood of a plummet in stock prices. 

Despite many studies (see, e.g., Datta et al. 2010; Samson and Swink 2023) arguing that layoffs or 

factory closures do not always benefit firm productivity, profitability, or stock prices, scaling down 

operations emerges as an obvious strategic choice for firms to cope with the economic downturn. For 

instance, leading technology firms including Google, Microsoft, and Amazon exhibit no hesitation in 

announcing mass redundancy plans when facing uncertain economic outlooks and falling stock prices.  

Researchers often employ the concept of resilience, which denotes a firm’s capacity to anticipate, 

adjust, and adapt in an ever-changing and unpredictable environment (Ambulkar et al., 2015; Ortiz-de-

Mandojana and Bansal, 2016; Cohen et al., 2022), to interpret these management practices with an 

attempt to understand how organizations and systems respond to exogenous disturbances. Resilience 

helps firms survive and eventually thrive by improving their capacity to endure and adapt to 

environmental changes (Markman and Venzin, 2014; Ortiz-de-Mandojana and Bansal, 2016; 

DesJardine et al., 2019). Other management theories also support the idea that resilient firms are more 

capable of developing operating flexibility and therefore enable them to prepare for and navigate 

through challenging economic conditions. For instance, contingency theory argues that firms with high 

operating flexibility are better positioned to handle uncertain and evolving environments (Dong et al., 

2022). The resource-based view theory considers operating flexibility a critical resource that enables 

firms to adapt to changing market conditions and stay ahead of competitors (Bromiley and Rau, 2016; 

Hitt et al., 2016).  

Both industry practices and management theories indicate that firms with larger flexibility in 

downsizing operations are more resilient compared to others during economic recessions. Since firms’ 

resilience often involves minimizing losses during disruptive events, a common method of assessing 

firm resilience involves evaluating their performance in the face of major disruptions or black swan 

events, such as the 2008 financial crisis and the COVID-19 Pandemic (Ambulkar et al., 2015; 
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DesJardine et al., 2019; Jiang et al., 2023). For publicly listed firms, an essential criterion for surviving 

and navigating economic recessions is to manage the risk of stock crashes. Noteworthily, the existing 

and rather extensive finance literature on stock crash risk primarily focuses on information asymmetry, 

arguing that business managers’ bad news hoarding behaviors tend to trigger stock crashes (see, e.g., 

Jin and Myers, 2006; Hutton et al., 2009; Kim et al., 2011). However, this literature overlooks firms’ 

underlying operations capability and performance, leaving this apparent benchmark narrative of firm 

operations largely unexplored. In contrast to the behavioral channel where managers withhold bad news 

and release it all at once, thus resulting in abrupt stock price crashes, firms’ operational flexibility is 

arguably a more fundamental factor. In other words, it is plausible that firms’ ability to adjust their real 

operations plays an important role in explaining stock price crash risk and cultivating resilient firms.  

This paper addresses this facet by providing both theoretical link and empirical evidence. Real 

options theory suggests that companies can create value by investing in capabilities that provide real 

options to adjust based on changing circumstances (Pandza et al., 2003). We adopt the real-options 

asset-pricing framework developed by Hackbarth and Johnson (2015, henceforth referred to as HJ) to 

investigate the implications of operating flexibility on stock price crash risk. The HJ model considers 

how a firm, equipped with the ability to adjust its scale of operations, optimally chooses its investment 

policy in response to productivity shocks, while accounting for the presence of adjustment frictions. 

The lump-sum nature of these adjustment frictions leads to a discrete scale adjustment policy, 

characterized by firms’ productivity levels in relation to endogenously determined scale adjustment 

thresholds.  

Through exploring the association between firm values and the optimal downsizing adjustment 

policy, we uncover the implications of the HJ model on stock price crash risk (defined as the negative 

skewness of log returns). Our analytical work starts with a straightforward interpretation. During 

periods of low productivity, the fixed operation costs associated with assets in place amplify crash risk 

due to the operating leverage effect. The contraction option, on the other hand, counters the operating-

leverage effect, especially when productivity approaches the option-exercise threshold. Furthermore, 

firms with higher operating flexibility, as characterized by lower downscale adjustment frictions, 

exhibit a more pronounced real-option effect. Therefore, we propose three testable hypotheses: (i) firms’ 
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operating flexibility, i.e. their ability to scale down operations timely, reduces the risk of stock price 

crashes; (ii) the attenuating effect of firm operating flexibility on crash risk is more prominent during 

recession periods (iii) the impact of operating flexibility is stronger for firms with lower productivity. 

These hypotheses link firms’ operating flexibility with stock price crash risk without appealing to the 

bad news withholding argument. 

To test the hypotheses, we utilize a large sample of U.S. public firms between 1961 and 2020. In 

our empirically grounding analytical investigation, we adopt several widely recognized crash risk 

measures from the literature (e.g., Chen et al., 2001; Jin and Myers, 2006; Hutton et al., 2009). Drawing 

upon the firm-level inflexibility measure of Gu et al. (2018) and motivated by the HJ model, we 

construct a proxy for operating flexibility, denoted as FLEX, by calculating the reciprocal of the 

standardized firm-specific maximum level of costs over sales. The model counterpart of FLEX is 

negatively associated with downscale adjustment frictions. Our empirical analysis indicates a 

statistically significant negative association between FLEX and crash risk. Moreover, the economic 

impact of FLEX is comparable to other important determinants of crash risk, e.g. investor heterogeneity 

(Chen et al., 2001) and accrual manipulation (Hutton et al., 2009). 

We carry out several cross-sectional tests to investigate the mechanism underlying the negative 

association between operating flexibility and stock crash risk. Our analytical results assert that the 

operating-flexibility effect is more pronounced near the option-exercise threshold, i.e., when firm 

productivity and profitability are low and when operating leverage is high. Therefore, we partition the 

sample based on firms’ productivity, profitability, and operating leverage and estimate the FLEX effect 

for each respective subset. Consistent with our predictions, we find that the negative association 

primarily manifests in firm-year that exhibit low productivity, low profitability, or high operating 

leverage. These results, taken together, support the real-options mechanism as the driving force behind 

the negative association between FLEX and stock price crashes. 

Our study addresses the gap in the existing literature by investigating the effects of firms’ 

downscale operation flexibility on mitigating the negative impact of economic recessions through 

empirically grounding analytics. Our research asserts that US firms with greater flexibility in curtailing 

operational expenditure, such as inventory (Udenio et al., 2018; Wu et al., 2019) and R&D capital (Kim 
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and Zhu, 2018; You et al., 2020), are better positioned to withstand and navigate through economic 

downturns. These discoveries provide a comprehensive outlook on how firms’ operations fundamentals 

– ranging from productivity and profitability to operating flexibility – affect firms’ resilience and the 

crucial role played by operational resources and strategies in reducing the adverse impact of challenging 

external economic environments. Our approach within the operations management framework diverges 

from previous research that has predominantly focused on other factors such as corporate governance 

(Graham et al., 2011), diversification (Kuppuswamy and Villalonga, 2016), and brand capital (Hasan 

et al., 2022). It is important to note that our study acknowledges the significance of those non-OM 

factors but instead seeks to strike a balance in the ongoing academic debates by presenting an OM 

perspective. 

Second, our paper contributes to a growing literature on the role of real options in shaping 

corporate behaviors. Early research on investment under uncertainty demonstrates that firms’ 

(dis)investment frictions govern their investment policies (e.g., Abel and Eberly, 1996). Operation 

flexibility also affects firms’ hedging activities in the futures market (Ho, 1984; Kamara, 1993). Recent 

theoretical and empirical works tease out the asset pricing implications of real flexibility, showing that 

real options play a pivotal role in explaining firms’ risk and return patterns (Cooper, 2006; Hackbarth 

and Johnson, 2015). Furthermore, several papers highlight that various forms of flexibility – whether at 

the firm, supply chain, or industry level – affect capital structure (MacKay, 2003; Reinartz and Schmid, 

2016; Serfling, 2016; D’Acunto et al., 2018; Jiang et al. 2023). Our research enriches this expanding 

literature by shedding light on the role of real flexibility in managing risk of stock price crash. 

Third, our work contributes to the literature on the mechanisms underlying stock price crash risk. 

The majority of crash risk research resides within the agency theory framework, which posits that 

heightened levels of information asymmetry between corporate managers and shareholders exacerbate 

stock price crash risk. Examples include the reporting environment’s impact on crash risk through the 

channels of, e.g., accounting standards change and accounting conservatism (Jin and Myers, 2006), tax 

avoidance practices (Kim et al., 2011), earnings management (Kim et al., 2014), and accounting 

information transparency (Hutton et al., 2009). Additionally, the capital market structure may either 
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encourage or discourage managers’ bad news hoarding behavior through, e.g., constraints or frictions 

on short selling (Chen et al., 2001; Hong and Stein, 2003). Our findings that firms’ flexibility in their 

operations can influence their stocks’ crash risk represent a substantial deviation from this conventional 

notion of bad news withholding argument. This novel mechanism has been largely overlooked in the 

extant literature. By introducing a real-operations-based explanation, our findings complement the 

prevailing behavioral explanations rooted in the bad news hoarding literature. 

The rest of this paper is organized as follows. Section 2 develops our hypotheses as motivated 

from our model. Section 3 introduces the sample and measures used in the empirical tests. Section 4 

reports our empirical results. Section 5 concludes our findings. 

2. Hypothesis Development 

2.1. Model framework 

We employ the production-based asset-pricing model developed by Hackbarth and Johnson 

(2015) to examine the association between operating flexibility and stock price crash risk. The 

HJ model allows businesses to expand in good times and contract in bad times through real 

options. Since our research centers on understanding firms’ resilience during economic 

downturns, we focus on the contraction option and its implications on crash risk. Essentially, 

we consider a simplified version of the HJ model, by “turning off” the expansion option. The 

firm receives profit flow per unit time 𝛱𝑡 = 𝜃𝑡
1−𝛾

𝐾𝑡
𝛾

− 𝑚𝐾𝑡, where 𝐾 denotes the capital assets, 

and 𝜃 is the productivity level. 𝛾 ∈ (0,1) captures the decreasing return to scale, and 𝑚 > 0 

measures operating cost per unit capital asset. The productivity 𝜃  evolves exogenously 

according to a diffusion process with drift 𝜇 and volatility 𝜎, and in response, the firm chooses 

its optimal scale of operations 𝐾𝑡 to maximize the firm value 𝐽, the discounted value of the 

above profit stream, subject to downscale adjustment costs. These are the fixed adjustment 

costs 𝑓𝑈𝜃1−𝛾𝐾𝛾  and the variable deadweight loss (1 − 𝑝𝑈)Δ𝐾  corresponding to a resale 
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amount of Δ𝐾, where 𝑓𝑈 ≥ 0 and 𝑝𝑈 ≤ 1 are the parameters characterizing the adjustment 

frictions. 

As these adjustment frictions are lumpy in nature, occurring only upon scale adjustments, 

the firm strategically pursues a discrete capital adjustment policy. In the absence of adjustment 

frictions, the firm would always set 𝐾𝑡 to its target value 𝐾𝑡
∗ = (𝑚/𝛾)1/(𝛾−1)𝜃𝑡  to maximize its 

profit flow. However, with the presence of lumpy frictions, the firm would have to wait for 𝐾𝑡 

to deviate from 𝐾𝑡
∗  by a sufficiently large amount before the benefit of scale adjustment 

outweighs the cost. Because both the profit flow and adjustment costs are linearly homogenous 

in 𝜃 and 𝐾, the firm’s optimal policy can be captured by a single state variable 𝑍𝑡 = 𝐾𝑡/𝜃𝑡, the 

inverse scaled productivity. See FIGURE 1 for an illustration of the optimal policy. The state 

variable 𝑍𝑡 = 𝐾𝑡/𝜃𝑡 (the inverse scaled productivity) evolves within the interval (0, 𝑈). Upon 

contacting the boundary at 𝑈, downward adjustment on 𝐾𝑡 occurs and 𝑍𝑡 jumps to the target 

level at 𝐻. The parameters, 𝑈 and 𝐻, are determined by a set of optimality conditions for the 

firm’s value-maximization problem. See Appendix A for detailed characterization. 

 

FIGURE 1. The firm’s optimal investment policy 

2.2. Negative return skewness 

Conditional on the optimal policy, the firm’s value 𝐽 evolves stochastically in response to 

productivity changes. Let 𝑅 = (𝛥𝐽 + 𝛱𝛥𝑡)/𝐽 denote the total return of the firm’s equity over 

a horizon of Δ𝑡 . The closed-form expression of 𝐽  as a function of 𝜃 , facilitated by the 

tractability of the HJ model, enables us to explicitly derive the moments of 𝑅. We define 

negative return skewness (𝑁𝑒𝑔𝑆𝑘𝑒𝑤) as the negative of the coefficient of skewness of the log 

returns 𝑙𝑅 = log(1 + 𝑅), i.e., 
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𝑁𝑒𝑔𝑆𝑘𝑒𝑤 = −𝐸 [(
𝑙𝑅 − 𝜇𝑙𝑅

𝜎𝑙𝑅
)

3

] .  

Here 𝜇𝑙𝑅 and 𝜎𝑙𝑅 are the mean and standard deviation of 𝑙𝑅, respectively. The use of log returns, 

instead of raw returns, is consistent with the stock crash risk measures used in the empirical 

literature (see, e.g., Chen et al., 2001). When returns follow the benchmark of a lognormal 

distribution, 𝑁𝑒𝑔𝑆𝑘𝑒𝑤 is equal to 0. 

For the convenience of discussion, we establish the following proposition in terms of the 

scaled productivity 𝑃𝑡 = 𝜃𝑡/𝐾𝑡, instead of its reciprocal 𝑍𝑡. 

Proposition 1. The leading order, in 𝛥𝑡, of the negative return skewness, conditional on the 

scaled productivity 𝑃, is 𝑁𝑒𝑔𝑆𝑘𝑒𝑤(𝑃) = 𝑁𝑆𝐾𝐸𝑊(𝑃) √Δ𝑡 + 𝑜(√Δ𝑡), where  

𝑁𝑆𝐾𝐸𝑊(𝑃) = 3𝜎 (
𝑄′

𝑄
−

𝑄′′

𝑄′ ). 

Here 𝑄 = 𝐽/𝐾 is firm value scaled by capital assets, and the derivatives are taken with respect 

to log 𝑃, i.e., 𝑄′ =
𝑑 𝑄

𝑑 log P
, 𝑎𝑛𝑑 𝑄′′ =

𝑑 𝑄′

𝑑 log 𝑃
.  

Unsurprisingly, the negative skewness is related to the convexity of the firm value in 

productivity (𝑄′′/𝑄′), which captures the asymmetric response of the firm value to productivity 

shocks. Furthermore, it is also positively related to operating leverage, as manifested in the 

term 𝑄′/𝑄 representing the elasticity of firm value to productivity fluctuations.  

In the absence of contraction options, the firm’s value is simply the discounted value of 

the profit stream. Given that 𝜃 evolves according to a diffusion process, it is straightforward to 

see that the firm’s value follows the same functional form as the profit flow, i.e., 𝐽(𝜃, 𝐾) =

𝐴𝜃1−𝛾𝐾𝛾 − 𝑆𝐾 , where 𝐴  and 𝑆  are some positive constants. The two terms in the above 

expression correspond to the contributions to the firm value from the revenues and operational 

costs, respectively. Consequently, 𝑄 = 𝐽/𝐾 = 𝐴𝑃1−𝛾 − 𝑆 , and thus 𝑄′′/𝑄′ = (1 − 𝛾); and 

𝑄′/𝑄 = 𝐴(1 − 𝛾)𝑃1−𝛾/(𝐴𝑃1−𝛾 − 𝑆), which is positive and increases as productivity drops, as 

the firm’s operational costs (the 𝑆𝐾 term in 𝐽) become more important compared to its revenues 
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(the 𝐴𝜃1−𝛾𝐾𝛾  term in 𝐽). Therefore, in the absence of contraction options, the non-trivial 

dependence of 𝑁𝑒𝑔𝑆𝑘𝑒𝑤 on 𝑃 derives contribution solely from the operating-leverage effect.1 

We denote this contribution as the assets-in-place component. 

On the other hand, exercising the option curtails the firm from further losses following 

unfavorable productivity movements, adding value to the firm. The added value is more 

sizeable near the option-exercise threshold. Superimposing on the otherwise diminishing firm 

value, the contraction option makes the firm value more convex in productivity. Therefore, we 

expect the contraction option to reduce 𝑁𝑒𝑔𝑆𝑘𝑒𝑤, especially so when productivity is near the 

contraction-option exercise threshold. We denote this contribution as the contraction-option 

component, which is negative and more sizable as productivity drops. We summarize the above 

discussions in the proposition below and leave the formal proofs in Appendix B. 

Proposition 2. The instantaneous negative return skewness, 𝑁𝑆𝐾𝐸𝑊(P), can be decomposed 

as 𝑁𝑆𝐾𝐸𝑊(𝑃) = 𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃(𝑃) + 𝑁𝑆𝐾𝐸𝑊𝐶𝑂(𝑃) , where the components denote 

contributions from the assets-in-place (AIP) and the contraction option (CO), respectively. 

Moreover, the signs and monotonicity of the components are 

𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃(𝑃) > 0, 𝑁𝑆𝐾𝐸𝑊𝐶𝑂(𝑃) < 0, 

𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃
′ (𝑃) < 0, 𝑁𝑆𝐾𝐸𝑊𝐶𝑂

′ (𝑃) > 0, 

where 𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃
′ (𝑃) =

𝑑 𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃(𝑃)

𝑑 log 𝑃
, etc.  

The interplay of the assets-in-place and contraction-option effects leads to a non-linear 

relationship between 𝑁𝑆𝐾𝐸𝑊 and 𝑃, see FIGURE 2 for illustration. When 𝑃 is large, both the 

operating-leverage effect and the contraction-option effect are weak, therefore, 𝑁𝑆𝐾𝐸𝑊 

approaches 0. As 𝑃 drops, operating leverage comes into play and 𝑁𝑆𝐾𝐸𝑊 increases. As 𝑃 

 
1 Formally, the operating leverage may be defined as the elasticity of profits with respect to productivity shocks, 

i.e., (𝜃/𝛱)(𝑑𝛱/𝑑𝜃) = (1 − 𝛾)𝑃1−𝛾/(𝑃1−𝛾 − 𝑚). Note the resemblance of this expression with 𝑄′/𝑄.  
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drops further, the contraction option kicks in, opposing the operating-leverage effect. This can 

reverse the operating-leverage effect when 𝑃 becomes very low.  

  

FIGURE 2. The components of negative skewness (𝑵𝑺𝑲𝑬𝑾) according to the Proposition 2  (left) 

and the total negative skewness resulting from their sum (right) 

2.3. Testable hypotheses 

According to Proposition 2, the contraction option induces a negative contribution to negative 

skewness ( 𝑁𝑆𝐾𝐸𝑊𝐶𝑂 < 0 ). Therefore, firms that are more flexible in exercising their 

contraction options, manifested in fewer adjustment frictions, should display lower stock price 

crash risk. To illustrate, Figure 3shows how the variable adjustment-cost parameter for 

disinvestment (𝑝𝑈) affects 𝑁𝑆𝐾𝐸𝑊, with other parameters fixed at the baseline calibration 

values provided by Hackbarth and Johnson (2015).2 𝑝𝑈 denotes the resale price per one unit of 

capital assets when exercising the contraction option. Or, put in other words, (1 − 𝑝𝑈)Δ𝐾 

reprsents the deadweight loss corresponding to a resale amount of Δ𝐾. Lower values of 𝑝𝑈 

corresponds to higher adjustment frictions and hence lower levels of operating flexibility. The 

figure shows clearly that more flexible firms (with higher 𝑝𝑈) are associated lower levels of 

stock price crash risk (represented by 𝑁𝑆𝐾𝐸𝑊). 

 
2 Specifically, the model parameters mentioned in Section 2.1 take their baseline values as: 𝛾 = 0.78, 𝑚 =
0.0669, 𝜇 = 0.146, 𝜎 = 0.61, 𝑝𝑈 = 0.1345, 𝑓𝑈 = 0.0077. 
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FIGURE 3. The impact of operating flexibility, in terms of contraction frictions, on negative 

skewness (𝑵𝑺𝑲𝑬𝑾) 

Hypothesis 1. Firms with greater flexibility in downscaling operation experience lower 

stock price crash risk. 

Moreover, as our model indicates, the loss-curtail mechanism of operating flexibility 

manifests itself most prominently when it is most beneficial to cut down unproductive 

operations and capital. While the empirical literature has focused extensively on the 

determinants of stock price crash risk, it has paid less attention to its dependence on market 

characteristics. In this regard, an economic downturn is the ideal setting for testing our model’s 

predictions, leading to our second hypothesis. 

Hypothesis 2. The protection of downscale operation flexibility from stock price crash 

risk is stronger during economic downturns. 

Furthermore, Proposition 2 gives additional insights on the conditional pattern of the 

impact of operating flexibility. Specifically, 𝑁𝑆𝐾𝐸𝑊𝐶𝑂
′ (𝑃) > 0  indicates that the negative 

contribution of the contraction option to the crash risk is more sizeable for lower levels of 

productivity, i.e., when the firm is closer to its option-exercise threshold. Therefore, the crash-

risk-reduction effect of operating flexibility is stronger for these firms. This phenomenon is 
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also demonstrated in Figure 3, where the 𝑁𝑆𝐾𝐸𝑊 spread, across firms with different levels of 

operating flexibility, is broader when log 𝑃 is lower. Since, in our model, productivity and 

profitability are synonymous, both of which are negatively associated with operating leverage, 

the conditional pattern may be expressed in all these three variables. 

Hypothesis 3. The protection from downscale operation flexibility is stronger for firms 

with lower productivity, lower profitability, or higher operating leverage. 

3. Data and Measures 

3.1. Data and sample 

Our sample comprises U.S. non-financial and non-utility firms publicly traded on the NYSE, 

AMEX, and NASDAQ stock exchanges from 1961 to 2020. We obtain firms’ financial 

accounting data from the Compustat Fundamentals annual dataset. To compute crash risk 

measures, we obtain daily stock returns from the Center for Research in Security Prices (CRSP). 

We keep common stocks and exclude firm-years that contain fewer than 26 weeks of returns. 

Additionally, we exclude stocks with share prices below $1 at the fiscal year-end.  

3.2. Measuring operating flexibility 

Within our model, a firm’s operating flexibility is determined by its scale adjustment frictions. 

Empirically, these frictions can be hard to measure. The model implies a monotonous 

relationship between the contraction threshold 𝑈 and the friction parameters. Intuitively, a firm 

with higher adjustment frictions tends to wait for productivity 𝜃 to drop to a lower level before 

opting for downscale adjustments. This results in an elevated threshold 𝑈 for the inverse scaled 

productivity 𝑍 = 𝐾/𝜃. Figure 4 presents an illustration of the positive relationship between 𝑈 

and the deadweight loss per unit resale amount 1 − 𝑝𝑈.  
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FIGURE 4. The relationship between contraction boundary (𝑼) and adjustment friction (𝟏 − 𝒑𝑼) 

This motivates us to measure 𝑈  empirically using the maximum level of the firm’s 

historical operational costs over sales 𝑂𝑃𝐶𝑆 =  𝑚𝐾/(𝜃1−𝛾𝐾𝛾), which is positively related to 

𝑍. We further scale 𝑈 by the volatility of productivity 𝜎, because 𝑈 increases in 𝜎 given the 

same level of adjustment frictions. In other words, we define contraction inflexibility for firm 

𝑗 in year 𝑡 as 

𝐼𝑁𝐹𝐿𝐸𝑋𝑗,𝑡 =

max
𝜏∈𝐼𝑗

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐶𝑜𝑠𝑡𝑠𝑗,𝜏

𝑆𝑎𝑙𝑒𝑠𝑗,𝜏

std
𝜏∈𝐼𝑗

 (Δ log
𝑆𝑎𝑙𝑒𝑠𝑗,𝜏

𝐴𝑠𝑠𝑒𝑡𝑠𝑗,𝜏
)

, 

where 𝐼𝑗 is the time window used to construct the proxy. The above expression closely mimics 

the inflexibility measure of Gu et al. (2018), who uses the range of 𝑂𝑃𝐶𝑆 in the numerator 

instead of the maximum. 

We further define operating flexibility as 𝐹𝐿𝐸𝑋 = 1/𝐼𝑁𝐹𝐿𝐸𝑋. Depending on the choice 

of the time window 𝐼𝑗, we construct three versions of operating flexibility: FLEX, with 𝐼𝑗 being 

the 20-year rolling window (𝑡 − 20, 𝑡); FLEX2, with 𝐼𝑗 being the period from the beginning of 

the firm to year 𝑡; and FLEX3, with 𝐼𝑗 being firm 𝑗’s full period in our sample. We require 10 

non-missing observations in each window for the computation of FLEX, FLEX2, and FLEX3. 
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3.3. Measuring stock crash risk 

The stock price crash risk literature primarily follows Chen et al. (2001) in computing crash 

risk measures based on firm-specific weekly returns, estimated as the regression residuals 

derived from an expanded market model. Let 𝑊𝑗,𝜏 denotes stock 𝑗’s specific return in week 𝜏 

of year 𝑡, Chen et al. (2001) define the negative coefficient of skewness NSKEW and down-

to-up volatility DUVOL as follows: 

𝑁𝑆𝐾𝐸𝑊𝑗,𝑡 = −
𝑛(𝑛 − 1)

3
2 ∑ 𝑊𝑗,𝜏

3
𝜏  

(𝑛 − 1)(𝑛 − 2)(∑ 𝑊𝑗,𝜏
2

𝜏 )
3
2

, and 𝐷𝑈𝑉𝑂𝐿𝑗,𝑡 = log
(𝑛𝑢 − 1) ∑ 𝑊𝑗,𝜏

2
𝜏,𝐷𝑜𝑤𝑛  

(𝑛𝑑 − 1) ∑ 𝑊𝑗,𝜏
2

𝜏,𝑈𝑝

,  

where 𝑛 is the number of stock 𝑗’s weekly returns during year 𝑡, and 𝑛𝑢 and 𝑛𝑑 are the number 

of up and down weeks. A weekly return 𝑊𝑗,𝜏 is classified as a up (down) return if it is above 

(below) the firm-specific annual mean. In addition, Hutton et al. (2009) construct a binary 

measure 𝐶𝑅𝐴𝑆𝐻𝑗,𝑡 to indicate the presence of a crash event during year 𝑡. 𝐶𝑅𝐴𝑆𝐻𝑗,𝑡 is set to 1 

if stock 𝑗, in year 𝑡, has at least one weekly return 𝑊𝑗,𝜏 that lies 3.09 standard deviations below 

its annual mean, and is set to 0 otherwise. The choice of the 3.09 cut-off point is based on a 

0.1% frequency of weekly crash events, assuming a normal distribution for the weekly firm-

specific returns. 

We obtain the firm-specific weekly returns 𝑊𝑗,𝜏 as follows. Following Kim et al. (2011), 

for each firm-year, we assign weekly returns to the 12-month period ending three months after 

the fiscal year-end. For our baseline crash risk measures, we follow Jin and Myers’s (2006) 

expanded market models to estimate  𝑊𝑗,𝜏, 

𝑟𝑗,𝜏 = 𝛼𝑗 + 𝛽1,𝑗𝑟𝑚,𝜏−2 + 𝛽2,𝑗𝑟𝑚,𝜏−1 + 𝛽3,𝑗𝑟𝑚,𝜏 + 𝛽4,𝑗𝑟𝑚,𝜏+1 + 𝛽5,𝑗𝑟𝑚,𝜏+2 + 𝜖𝑗,𝜏 , 

where 𝑟𝑗,𝜏  is stock 𝑗’s return in week 𝜏, and 𝑟𝑚,𝜏  is the return on the CRSP value-weighted 

market index. The inclusion of the lead and lag terms are adopted to correct for non-
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synchronous trading (Dimson, 1979). The firm-specific weekly return is then defined as 𝑊𝑗,𝜏 =

log(1 + 𝜖𝑗,𝜏).  

To provide a more independent measure, we also construct the above crash risk measures 

using another widely used market model. Specifically, we follow Hutton et al. (2009) and 

introduce the industry index into the expanded market model,  

𝑟𝑗,𝜏 = 𝛼𝑗 + 𝛽1,𝑗𝑟𝑚,𝜏−1 + 𝛽2,𝑗𝑟𝑖,𝜏−1 + 𝛽3,𝑗𝑟𝑚,𝜏 + 𝛽4,𝑗𝑟𝑖,𝜏 + 𝛽5,𝑗𝑟𝑚,𝜏+1 + 𝛽6,𝑗𝑟𝑖,𝜏+1 + 𝜖𝑗,𝜏 , 

where 𝑟𝑖,𝜏 is the return on the Fama and French value-weighted 49-industry index in week 𝜏. 

We label the corresponding crash risk measures as NSKEW2, DUVOL2 and CRASH2, 

respectively.  

Before using these empirical measures of crash risk to test our hypotheses, one might 

rightly question whether they can truly represent their counterpart analytical version set out in 

Proposition 1, which gives the leading order negative skewness in an infinitesimal horizon 

Δ𝑡 → 0. To address this concern, we simulate the firm’s returns over various lengths of the 

horizon Δ𝑡 conditional on productivity and compute their negative skewness, see Figure 5.3 

The negatives skewness of simulated returns is scaled by √Δ𝑡  to be comparable with 

𝑁𝑆𝐾𝐸𝑊(𝑃) of our analytical result. It is evident that our analytical result is a very good 

approximation for horizons up to quarterly returns but deviates slightly from the annual returns, 

although the conditional pattern of 𝑁𝑆𝐾𝐸𝑊 vs. 𝑃 remains accurate. This indicates that the 

above empirical measures of crash risk, computed from returns over the weekly horizon, are 

suitable for testing the hypotheses derived from our analytical results. 

 
3 The model parameters used in this exercise are the baseline calibration values taken from Hackbarth and Johnson 

(2015). 
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FIGURE 5. Comparison of the analytical negative skewness (𝑵𝑺𝑲𝑬𝑾) with the negative skewness 

of simulated returns 

3.4. Control variables 

We adopt a set of control variables that prior studies have identified as important in explaining 

stock price crash risk. Following Kim et al. (2011; 2014), we control for stock return volatility 

SIGMA and, to account for serial correlation of crash risk, the lagged crash risk measure 

l.NSKEW. Chen et al. (2001) document that past returns (RET) and market-to-book (MB) can 

forecast crash risk through the mechanism of bubble buildup and subsequent price reversion to 

the financial fundamentals. Chen et al. (2001) also show that investor heterogeneity affects 

crash risk. We, therefore, include RET, MB, and stock turnover (DTURN) as control variables, 
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where RET is computed as the annual mean of 𝑊𝑗,𝜏.4 Harvey and Siddique (2000) document 

that firm size (SIZE) has predictive power for crash risk. Following prior studies (e.g., Chen et 

al., 2001; Hutton et al., 2009), we also control for financial leverage (LEV), return on assets 

(ROA), and discretionary accruals (ACCM). The distributions of these control variables within 

our sample are comparable to those observed in existing studies in the crash risk literature.5 

This indicates that our sample is representative of the broader mainstream empirical works. 

To test Hypothesis 3, we employ conditioning variables to split the sample into high and 

low productivity, profitability, and operating leveraging groups. Concerning productivity, we 

employ Tobin’s Q (TobinQ) as an alternative proxy alongside MB. We use return on assets 

(ROA) and gross profits over sales (GPOA) to measure profitability. Finally, for assessing 

operating leverage, we use operational costs over sales (OPCS) and Gu et al.’s (2018) quasi-

fixed costs (QFC). We discuss these in more detail in Section 4.5.  

3.5. Summary statistics 

We report the descriptive statistics of all the variables used in our tests in Table 1. To minimize 

the impact of outliers, we winsorize all continuous variables at the 1% and 99% levels. See 

Table C.1 for detailed variable definitions. 

TABLE 1. Descriptive statistics 

 Count Mean SD P25 P50 P75 

Operating flexibility measures 
FLEX 78,915 0.174 0.104 0.101 0.149 0.219 

FLEX2 78,960 0.171 0.101 0.103 0.148 0.212 

FLEX3 114,736 0.176 0.096 0.114 0.157 0.215 

Stock price crash risk measures 

NSKEW 130,981 -0.189 0.812 -0.615 -0.193 0.220 

DUVOL 130,981 -0.219 0.738 -0.699 -0.234 0.243 

CRASH 130,981 0.159 0.365 0.000 0.000 0.000 

NSKEW2 130,957 -0.176 0.790 -0.595 -0.181 0.223 

DUVOL2 130,957 -0.203 0.724 -0.677 -0.218 0.252 

CRASH2 130,957 0.168 0.374 0.000 0.000 0.000 

Control variables 

SIGMA 128,052 0.056 0.029 0.035 0.050 0.070 

 
4 SIGMA2, RET2, and l.NSKEW2 are variables similar to SIMGA, RET, and NSKEW but are estimated under 

the second extended market model described in Section 3.3. 
5 For example, the means and standard deviation values of SIGMA, RET, SIZE, MB, and ROA are similar to the 

corresponding values reported by Kim et al. (2011; 2014) and Dang et al. (2018). 
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RET 128,052 -0.199 0.225 -0.242 -0.121 -0.062 

l.NSKEW 128,052 -0.160 0.763 -0.588 -0.181 0.226 

DTURN 118,140 0.013 0.750 -0.169 0.001 0.175 

SIZE 128,849 5.361 2.111 3.785 5.238 6.794 

MB 124,144 2.978 3.558 1.129 1.894 3.327 

LEV 130,614 0.178 0.176 0.015 0.142 0.278 

ROA 129,803 0.012 0.217 0.006 0.052 0.097 

ACCM 124,532 0.136 0.169 0.037 0.084 0.165 

SIGMA2 128,005 0.055 0.029 0.034 0.048 0.068 

RET2 128,005 -0.188 0.218 -0.229 -0.113 -0.056 

l.NSKEW2 128,005 -0.148 0.743 -0.568 -0.171 0.225 

Conditioning variables 

TobinQ 127,157 1.955 1.553 1.064 1.430 2.186 

GPOA 130,725 0.381 0.268 0.216 0.354 0.521 

QFC 108,817 0.268 0.598 0.015 0.131 0.334 

OPCS 119,027 0.913 0.298 0.822 0.888 0.941 

Note: Continuous variables are winsorized at the 1% and 99% levels, and all variables are defined in 

Table C.1. 

The distributions of the crash risk measures, NSKEW, DUVOL, and CRASH, are similar 

to those reported in prior literature (see, e.g., Kim et al., 2011). For example, CRASH has a 

mean value of 0.159, suggesting that, on average, about 16% of stocks experience a crash event 

each year. NSKEW and DUVOL exhibit a high correlation, with a coefficient of 0.96, as seen 

in Panel B of Table C.2. In view of this, one might question whether DUVOL is sufficiently 

different from NSKEW to be used as an alternative measure for the empirical tests. However, 

as indicated in Panel B of Table C.2, the correlations of the three measures of crash risk 

between the two market models are lower (0.92, 0.89, and 0.85, respectively) compared to that 

between NSKEW and DUVOL (0.96). Therefore, using the alternative market model provides 

a more meaningful robustness check. 

A comparison of mean and standard deviation values reveals substantial variation among 

the different flexibility measures. In untabulated results, we find that about 10% of variation 

can be attributed to industry factors. This implies that a significant proportion of the variation 

remains within industries.6 Therefore, the flexibility measure based on the HJ model is superior 

to other industry-level measures of various aspects of firms’ operating flexibility, e.g., 

 
6  More precisely, through ANOVA analysis across Fama-French 49-industry groups, we find that industry 

explains 11.0%, 11.5%, and 9.6% of the overall variation in FLEX, FLEX2 and FLEX3, respectively. 



 

19 

inflexible employment (Syverson, 2004), the capital resalability index (Balasubramanian and 

Sivadasan, 2009), and wage premium (Kim, 2016).7 Such a firm-level measure enables us to 

examine operating flexibility’s association with crash risk beyond mere industry characteristics. 

Our flexibility measures are persistent over time, with autocorrelations of 0.98, 0.99, and 

1 for FLEX, FLEX2, and FLEX3, respectively. These findings accord with the model’s 

assumption that the adjustment frictions represent a stable firm attribute. Arguably, FLEX 

reflects the firm’s most recent operational information and, therefore, should be the most 

appropriate measure in capturing contemporaneous operating flexibility. FLEX3, on the other 

hand, weighs the firm’s entire history equally. However, given FLEX’s high persistence and 

the greater number of observations in our sample for FLEX3, the empirical suitability of each 

depends on the trade-off between measurement precision and statistical power. Consequently, 

besides the baseline version of FLEX, we compute FLEX2 and FLEX3 to facilitate additional 

robustness checks. 

4. Empirical results  

4.1. Baseline 

We examine the role of operating flexibility on future stock price risk using the following linear 

regression model and report the regression estimates in Table 2.  

 𝑁𝑆𝐾𝐸𝑊𝑗,𝑡 = 𝛽0 + 𝛽1𝐹𝐿𝐸𝑋𝑗,𝑡−1 + 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠𝑗,𝑡−1 + Year & Industry 𝐹𝐸 +  𝜖𝑗,𝑡 .  

The whole-sample result in column (3) shows that downscale operation flexibility is 

significantly and negatively associated with stock price crash risk, supporting our Hypothesis 

1. Moreover, the economic significance of operating flexibility is comparable to other 

determinants of crash risk. For example, one inter-quartile-range change in FLEX is associated 

with a 1.37% inter-quartile-range change in NSKEW, compared with, for example, 0.87% for 

 
7 Gu et al. (2018) provide tests to demonstrate that the inflexibility measure INFLEX is significantly correlated to 

these industry-level inflexibility measures. These results support the role of INFLEX in capturing various forms 

of frictions associated with adjusting physical and labour capital assets. 
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DTURN and 1.47% for ACCM.8 Our results for the effects of the control variables are also in 

line with previous findings. Firms that have higher past returns, higher return volatility, higher 

past crash risk, a higher investor heterogeneity, a higher market-to-book ratio, a larger size and 

more evidence of accrual manipulation are associated with higher stock price crash risk (see, 

e.g., Harvey and Siddique, 2000; Chen et al., 2001; Hutton et al., 2009; Kim et al., 2011; Kim 

et al., 2014). 

To test Hypothesis 2, which suggests that the operating flexibility’s protection effect is 

stronger during economic downturns, we first classify firm-year observations into recession 

and non-recession groups using the US Business Cycle dates provided by the National Bureau 

of Economic Research (NBER, see also Radin, 2023).9 A firm-year observation is categorized 

as a recession observation if any month of the firm’s 12-month crash-risk estimation window 

lies within a recession period. We then re-estimate our baseline regression model using the 

recession subsample. As evident in column (2) of Table 2, the coefficient of FLEX remains 

negative and statistically significant. Importantly, its magnitude is significantly larger in 

comparison to the whole sample (-0.153 vs. -0.097). This increase in statistical significance is 

especially noticeable when compared with other crash risk determinants. For example, one 

inter-quartile-range change in FLEX is associated with a 2.17% inter-quartile-range change in 

NSKEW, compared with, for example, 0.83% for DTURN and 0.51% for ACCM. Overall, 

these results strongly support Hypothesis 2, and thus corroborate our model’s insight that 

operating flexibility helps firms navigate episodes of declined economic activities. 

TABLE 2. Operating flexibility and stock price crash risk 

 

(1) 

Recession 

Periods 

(2) 

Non-recession 

Periods 

(3) 

Whole 

Sample 

    

FLEX -0.153*** -0.079** -0.097*** 

 (-2.76) (-2.17) (-3.19) 

SIGMA 3.456*** 5.731*** 5.077*** 

 
8 To illustrate the calculations, 1.37% = 0.097 × (0.219 − 0.101)/(0.220 + 0.615). 
9 The NBER business cycle data is publicly available at https://www.nber.org/research/business-cycle-dating.  

https://www.nber.org/research/business-cycle-dating


 

21 

 (4.06) (10.23) (10.86) 

RET 0.503*** 0.651*** 0.608*** 

 (4.68) (9.04) (10.17) 

l.NSKEW 0.007 0.023*** 0.019*** 

 (0.96) (4.37) (4.37) 

DTURN 0.020** 0.022*** 0.021*** 

 (2.27) (3.55) (4.18) 

SIZE 0.070*** 0.082*** 0.079*** 

 (19.40) (34.29) (39.51) 

MB 0.005** 0.002 0.003*** 

 (2.51) (1.57) (2.64) 

LEV -0.107*** -0.106*** -0.107*** 

 (-2.96) (-4.57) (-5.44) 

ROA 0.214*** 0.279*** 0.260*** 

 (3.85) (8.21) (8.99) 

ACCM 0.033 0.120*** 0.096*** 

 (0.82) (4.30) (4.15) 

Constant -0.649*** -0.833*** -0.783*** 

 (-15.55) (-30.07) (-33.94) 

    

Observations 20,971 56,623 77,594 

R-squared 0.088 0.062 0.067 

Year FE YES YES YES 

Industry FE YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. Recession periods are 

determined using the US Business Cycle dates provided by National Bureau of Economic Research 

(NBER). 

4.2. Robustness 

4.2.1. Alternative crash risk measures 

We perform a number of robustness checks using alternative crash risk measures and report 

the results in Panels A and B of Table 3 for the recession periods and the whole sample, 

respectively. To facilitate comparison, column (1) shows the baseline estimates. In column (2), 

following prior studies (e.g., Chen et al., 2001), we use DUVOL as the dependent variable. In 

column (3), as a more independent scrutiny, we assess the impact of FLEX on the likelihood 

of a crash event using a logistic regression of CRASH. Furthermore, we follow Hutton et al. 

(2009) and estimate the crash risk measures using the expanded market model, explained in 

Section 3.3, which adjusts stock returns by industry-level index returns in addition to the 

market index returns. We repeat the regression analyses of NSKEW, DUVOL and CRASH and 

report the estimates for NSKEW2, DUVOL2, and CRASH2 in columns (4)-(6), respectively. 

The results across all columns and both panels demonstrate that our baseline findings, in regard 
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to Hypotheses 1 and 2, are robust to using alternative methods of measuring the stock price 

crash risk. 

TABLE 3 Robustness 

Panel A. Alternative crash risk measures – Recession periods 

 (1) (2) (3) (4) (5) (6) 

 NSKEW DUVOL CRASH NSKEW2 DUVOL2 CRASH2 

       

FLEX -0.153*** -0.151*** -0.465** -0.160*** -0.143*** -0.471** 

 (-2.76) (-2.99) (-2.08) (-2.91) (-2.81) (-2.24) 

       

Observations 20,971 20,971 20,967 20,970 20,970 20,966 

(Pseudo) 𝑅2 0.088 0.103 0.043 0.078 0.090 0.044 

Controls YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Industry FE YES YES YES YES YES YES 

Panel B. Alternative crash risk measures – Whole sample 

 (1) (2) (3) (4) (5) (6) 

 NSKEW DUVOL CRASH NSKEW2 DUVOL2 CRASH2 

       

FLEX -0.097*** -0.104*** -0.242** -0.106*** -0.098*** -0.233** 

 (-3.19) (-3.79) (-2.22) (-3.55) (-3.61) (-2.26) 

       

Observations 77,594 77,594 77,594 77,581 77,581 77,581 

(Pseudo) 𝑅2 0.067 0.080 0.046 0.060 0.071 0.048 

Controls YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES 

Industry FE YES YES YES YES YES YES 

Panel C. Alternative operating-flexibility measures 

 
(1) (2) (3) (4) 

Recession Periods Whole Sample 

     

FLEX2 -0.157***  -0.074**  

 (-2.82)  (-2.40)  

FLEX3  -0.132***  -0.094*** 

  (-2.79)  (-3.60) 

     

Observations 20,981 30,013 77,639 110,279 

R-squared 0.087 0.099 0.067 0.076 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. 

4.2.2. Alternative operating flexibility measures 

Our main measure for operating flexibility 𝐹𝐿𝐸𝑋𝑗,𝑡  is constructed using a 20-year rolling 

window (𝑡 − 20, 𝑡) of firm 𝑗’s fundamentals. To explore the robustness of our findings in 

relation to this choice, we repeat the baseline analyses by replacing FLEX with two alternative 
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measures: 𝐹𝐿𝐸𝑋2𝑗,𝑡 uses firm 𝑗’s fundamentals from its beginning to year 𝑡; 𝐹𝐿𝐸𝑋3𝑗  uses firm 

𝑗’s fundamentals for the entire period in our sample. We report the results in Table 3 Panel C.  

FLEX2 shows the expected signs of impact on NSKEW, albeit with a lower level of 

statistical significance compared to FLEX. We interpret this as an indication of greater 

measurement error associated with FLEX2, likely due to its reliance on older information 

compared to FLEX. However, for the recession periods, the coefficient on FLEX2 aligns 

closely with the estimate of FLEX. The coefficient estimates of FLEX3 are slightly lower in 

magnitude but higher in statistical significance compared to FLEX. This consistency supports 

the notion that FLEX3 contains a greater degree of measurement error, offset by its higher 

number of observations, thereby enhancing its statistical power. Despite these differences, the 

overall pattern is clear — our baseline results, in regard to Hypotheses 1 and 2, hold when 

estimated with alternative versions of the operating flexibility measure. 

4.3. Length of recession exposure 

As argued in our hypothesis development section (Section 2.3), an economic downturn 

provides an ideal setting for testing our model’s predictions. To further utilize the Business 

Cycle data, we examine how the value of operating flexibility varies with the duration of a 

firm’s exposure to recessions. Similar to analyses in Section 4.1, we partition our sample 

according to the number of months during which a firm-year’s crash-risk estimation window 

falls within a recession period. Accordingly, we re-estimate the baseline model and report the 

results in Table 4.  

Column (1) duplicates Table 2 column (1) for ease of comparison. The coefficient of 

FLEX increases steadily and drastically as the time exposure to recession grows. To illustrate 

this, for a firm exposed to a recession for an entire year, the benefit of operating flexibility 

exceeds those of the entire sample by over threefold (i.e., contrast -0.334 with -0.097). 

Therefore, as the economy becomes more deeply entrenched in an economic downturn, a 
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typical firm will find downsizing operation flexibility more beneficial in mitigating stock price 

crash risk. 

TABLE 4. Length of recession exposure 

 (1) (2) (3) (4) (5) 

 Recession exposure for at least 

 1 month 3 months 6 months 9 months 12 months 

      

FLEX -0.153*** -0.191*** -0.207*** -0.289*** -0.334** 

 (-2.76) (-3.00) (-2.60) (-2.81) (-2.40) 

      

Observations 20,971 16,658 9,711 5,704 2,861 

R-squared 0.088 0.093 0.103 0.084 0.086 

Controls YES YES YES YES YES 

Year FE YES YES YES YES YES 

Industry FE YES YES YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. 

4.4. Nature of recession 

Is the value of operating flexibility uniform across all recessionary periods? Guided by our 

model, the FLEX proxy captures a firm’s ability to reduce operational expenditures during 

adverse circumstances. Consequently, to the extent that different recessions originate from 

different causes, the benefit of downscale operation flexibility might vary. To explore this 

closely, we split our sample into groups of firm-years that are exposed to different recession 

events. We then rerun our baseline model separately for these subsamples and report the results 

in Table 5. The FLEX coefficients exhibit considerable variation across different recession 

periods. We find that downscale operation flexibility is most valuable in mitigating stock price 

crash risk during the recession in 1973-1975, 1980, and 1990-1991. This result is 

understandable since each of these periods was marked by substantial spikes in oil prices. 

Consequently, higher costs are directly transmitted to firms’ operations, and it was the firms 

with greater downscale operation flexibility that were able to brace themselves against such 

real-side shocks.  

The effect of downscale operation flexibility on crash risk, however, appears to be less 

significant during other recession periods, which arise from causes that are not directly related 
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to escalated production costs. For example, the 1969-1970 recession was brought about by 

excessive Federal spending to fund the US’s military efforts during the Vietnam War, among 

other forms of increased public expenditure. The 1981-1982 recession, known as the “double-

dip recession”, followed the Fed’s aggressive monetary policy to tackle high inflation, resulting 

in an economic slowdown. The 2001 recession was triggered by the collapse of the Dotcom 

Bubble, characterized by unrealistically overvalued technology stocks. The 2007-2009 

recession was initiated by a plunge in housing prices that precipitated a global financial crisis, 

encompassing a complex sequence of events, including the spikes and crashes of oil prices in 

mid-2008. The short and abrupt 2020 recession followed the swift spread of the COVID-19 

pandemic that led to sudden travel restrictions and a surge in unemployment. 

Overall, our findings here demonstrate that downscale operation flexibility offers 

protection to firms by augmenting their operational responsiveness in the presence of negative 

real-side shocks. 

TABLE 5. Nature of recession 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 

Recession period 

69m12 73m11 80m1 81m7 90m7 01m3 07m12 20m2 

-70m11 -75m3 -80m7 -82m11 -91m3 -01m11 -09m6 -20m4 

         

FLEX -0.210 -0.320** -0.340* 0.162 -0.661*** -0.012 -0.064 -0.007 

 (-0.67) (-2.13) (-1.94) (1.02) (-2.88) (-0.08) (-0.59) (-0.04) 

         

Observations 1,033 2,435 2,431 3,021 1,595 2,695 5,115 2,641 

R-squared 0.111 0.130 0.098 0.124 0.100 0.100 0.049 0.058 

Controls YES YES YES YES YES YES YES YES 

Year FE YES YES YES YES YES YES YES YES 

Industry FE YES YES YES YES YES YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. 

4.5. Firm characteristics 

To further examine whether the crash-risk reduction effect of FLEX is manifested through the 

mechanism of contraction options as set out by our model, we look into relevant firm 

characteristics. We expect the impact of FLEX to be stronger for firms that are closer to their 
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option-exercise boundaries. In terms of our model notation, this corresponds to firms with 

lower levels of scaled productivity 𝑃. 

Empirically, 𝑃 may be proxied by various measures of productivity, profitability, and 

operating leverage, because these are all monotonously related in the model and therefore 

equivalently describe the model’s state variable 𝑃. For example, Hackbarth and Johnson (2015) 

verify the HJ model’s implied risk premium conditional on productivity (as proxied by the 

market-to-book ratio) and profitability (as proxied by the return on assets). Gu et al. (2018) use 

operating leverage to measure the closeness to real-option-exercising thresholds and find that 

operating-leverage risk-premium is moderated by operational flexibility. Gu et al. (2019) study 

the impact of operating flexibility on financial leverage and argue that unproductive firms 

(defined as firms with a high book-to-market ratio) find contraction options more valuable in 

maintaining a high level of financial leverage. We follow these studies closely in conducting 

cross-sectional analysis based on productivity, profitability and operating leverage. 

Specifically, to test Hypothesis 3, we categorize firms into subsets with high or low 

productivity, profitability, or operating leverage, and assess the magnitude of the FLEX effect 

in each subsample. 

4.5.1. Productivity 

Our model implies a monotonous relationship between productivity 𝜃 and market value of 

equity 𝐽. Therefore, a natural proxy for the scaled productivity 𝑃 is the ratio of market equity 

to book equity (MB), as also adopted by Hackbarth and Johnson (2015). From another point of 

view, firms with a low MB ratio are typically equipped with high levels of unproductive capital 

and may be regarded as having low levels of productivity. Modelling an all-equity financed 

firm, our analytical framework does not differentiate the value of total assets from equity. In 

view of this, we also employ Tobin’s Q (TobinQ) as an alternative proxy, defined as the market 

value of total assets scaled by the book value of total assets.  
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We run the baseline regression for each productivity subsample constructed using the 

median of MB and TobinQ. Estimation results are reported in Table 6. The table shows that 

FLEX is negatively and statistically significantly associated with stock price crash risk for 

firms with low levels of productivity. In contrast, the association is weak for firms with high 

productivity. This pattern is consistent across the two measures of productivity, and for both 

the whole sample and the recession sample. These findings support Hypothesis 3 that the crash-

risk-reduction effect of operating flexibility is more pronounced for firms with lower 

productivity. This also accords with the validity of FLEX in capturing contraction option 

flexibility, which manifests its impact primarily when firms are in episodes of low productivity, 

so that their contraction options become more valuable. 

TABLE 6. Firm characteristics: High/low productivity subsamples 

Panel A. Market-to-book (MB) 

 (1) (2) (1) (2) 

NSKEW 

Recession Periods Whole Sample 

Low  

MB 

High  

MB 

Low  

MB 

High  

MB 

     

FLEX -0.321*** 0.006 -0.173*** -0.010 

 (-4.38) (0.07) (-4.33) (-0.21) 

     

Observations 11,682 9,289 42,727 34,867 

R-squared 0.084 0.059 0.067 0.043 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Panel B. Tobin’s Q (TobinQ) 

 (1) (2) (3) (4) 

NSKEW 

Recession Periods Whole Sample 

Low 

TobinQ 

High 

TobinQ 

Low 

TobinQ 

High 

TobinQ 

     

FLEX -0.243*** -0.056 -0.171*** -0.004 

 (-3.33) (-0.65) (-4.36) (-0.08) 

     

Observations 11,733 9,163 42,985 33,890 

R-squared 0.084 0.054 0.066 0.040 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. 



 

28 

4.5.2. Profitability 

In our model, the profit flow rate scaled by capital assets, 𝛱/𝐾 = 𝑃1−𝛾 − 𝑚, is monotonously 

increasing in the scaled productivity 𝑃 . Therefore, we may use profitability to test the 

conditional effect of FLEX on stock price crash risk. We adopt two proxies of profitability for 

this exercise — the return on assets (ROA) (Hendricks et al., 2009; Swift et al. 2019) and the 

gross profits over assets (GPOA). Similar to the last section, we split the firms into high and 

low profitability subsamples according to the median level of ROA and GPOA, respectively, 

and run the baseline regressions for each subsample, and report the estimates in Table 7. The 

results show that FLEX has a significant negative impact on NSKEW in the low ROA and 

GPOA subsamples, whilst the association is weak in the high ROA and GPOA subsamples. 

These findings support our Hypothesis 3 that the crash-risk-reduction effect of operating 

flexibility is more pronounced for firms with lower profitability, which are closer to their 

contraction-option exercise thresholds. 

TABLE 7. Firm characteristics: High/low profitability subsamples 

Panel A. Return on assets (ROA) 

 (1) (2) (3) (4) 

NSKEW 

Recession Periods Whole Sample 

Low 

ROA 

High 

ROA 

Low 

ROA 

High 

ROA 

     

FLEX -0.172** -0.099 -0.114*** -0.041 

 (-2.26) (-1.20) (-2.73) (-0.91) 

     

Observations 9,826 11,144 37,037 40,557 

R-squared 0.089 0.087 0.063 0.066 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Panel B. Gross profits over assets (GPOA) 

 (1) (2) (3) (4) 

NSKEW 

Recession Periods Whole Sample 

Low 

GPOA 

High 

GPOA 

Low 

GPOA 

High 

GPOA 

     

FLEX -0.215*** -0.049 -0.162*** 0.036 

 (-3.04) (-0.53) (-4.15) (0.72) 

     

Observations 10,191 10,779 38,078 39,516 
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R-squared 0.088 0.096 0.065 0.073 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. 

4.5.3. Operating leverage 

From our model’s perspective, we may naturally frame the real-options effect on crash risk in 

terms of operating leverage. Exercising contraction options cuts down operational costs 

associated with unproductive capital. This becomes particularly valuable when the firm's 

operational costs gain significance relative to its revenue, indicating high operating leverage. 

We employ two proxies of operating leverage to test this conditional effect of FLEX on stock 

price crash risk. Motivated by the HJ model itself, Gu et al. (2018) measure operating leverage 

with quasi-fixed costs (QFC). The authors use the firm’s past data on sales and operational 

costs to predict the next period’s expected costs even if the current sales were zero, and then 

define QFC as the predicted costs scaled by actual sales. To complement this proxy, we also 

measure operating leverage as the simple ratio of operational costs to sales (OPCS).  

Similar to previous cross-sectional tests, we split the firms into high and low operating 

leverage subsamples according to the median level of QFC and OPCS each year, respectively, 

and run the baseline regressions for each subsample, and report the estimates in Table 8. Our 

results show that FLEX has a significant negative impact on NSKEW in the high QFC and 

OPCS subsamples, whilst the association is weaker in the low QFC and OPCS subsamples. 

These findings support our Hypothesis 3 that the crash risk-reduction effect of operating 

flexibility is more pronounced for firms with high operating leverage, for which cutting down 

operational costs associated with unproductive capital becomes more important. 

TABLE 8. Firm characteristics: High/low operating leverage subsamples 

Panel A. Quasi-fixed costs (QFC) 

 (1) (2) (3) (4) 

NSKEW 
Recession Periods Whole Sample 

High Low High Low 
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FLEX -0.193** -0.110 -0.136*** -0.069 

 (-2.27) (-1.41) (-2.88) (-1.61) 

     

Observations 9,331 10,364 35,522 37,850 

R-squared 0.095 0.080 0.073 0.059 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Panel B. Operational costs over sales (OPCS) 

 (1) (2) (3) (4) 

NSKEW 
Recession Periods Whole Sample 

High Low High Low 

     

FLEX -0.236*** -0.056 -0.098** -0.044 

 (-2.73) (-0.73) (-2.11) (-1.01) 

     

Observations 9,506 10,175 35,331 37,362 

R-squared 0.094 0.077 0.070 0.058 

Controls YES YES YES YES 

Year FE YES YES YES YES 

Industry FE YES YES YES YES 

Note: t-statistics are given in the parentheses *** p<0.01, ** p<0.05, * p<0.1. 

5. Conclusion 

This paper examines how firms’ operating flexibility affects the crash risk of their stock prices. 

Particularly, during periods of low productivity, a firm’s ability to cut down operational costs 

associated with unproductive capital can curtail firm losses and thereby reduce its downside 

risk. We formally study this mechanism using Hackbarth and Johnson’s (2015) real-options 

asset-pricing model. Our analytical insights show that firms’ operating flexibility, facilitated 

by their real options, can reduce the stock price crash risk. Importantly, the operating-flexibility 

effect is most pronounced during phases of low productivity and profitability, consistent with 

the loss-curtailment mechanism that we propose. 

Utilizing U.S. data spanning from 1961 to 2020, we present empirical evidence that 

supports our theoretical predictions. Motivated by our model, we construct a firm-level 

operating flexibility measure FLEX to proxy for firms’ ease of exercising their contraction 

options. Our analyses reveals a significant and robust negative association between FLEX and 

crash risk. This association is particularly stronger during recession periods, and becomes even 

more prominent as a firm becomes more entrenched in a recession. Furthermore, the crash-risk 
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reduction effect of FLEX is more pronounced when firms have lower profitability, lower 

productivity, or higher operating leverage. Lastly, using FLEX as a conditioning variable, we 

find evidence that operating flexibility attenuates or reverses the operating-leverage effect on 

crash risk. Taken together, these results confirm the real-options mechanism for stock price 

crash risk.   

When the corporate sector was shocked by economic downturns, we document a 

relationship between firms’ ability of downsizing operations and firm performance that varies 

in economically sensible ways. Specifically, we observe a negative association between the 

flexibility of downscaling operations and the risk of stock price crashes, with this link 

becoming more pronounced during longer and more severe recessions. Our research provides 

empirical evidence that highlights the role of downscale operation flexibility as an important 

insurance mechanism for both firms and investors, safeguarding them against bad economic 

states of the world. This new perspective adds the operations management dimension to other 

management factors such as corporate governance, diversification, and brand capital (Graham 

et al., 2011; Kuppuswamy and Villalonga, 2016; Hasan et al., 2022).  

Our study emphasizes a somewhat largely overlooked mechanism that may affect stock 

price crash risk – firms’ real operations decisions. While the extant literature primarily studies 

stock price crash risk through the perspective of bad news withholding in an information-

asymmetric environment (see, e.g., Jin and Myers, 2006; Hutton et al., 2009; Kim et al., 2011), 

our work suggests that firms’ operational decisions may play an important role in explaining 

stock price crashes. Our findings also complement a growing body of real-options and 

operations management research which reveals that real flexibility can affect, for example, 

corporate investment strategies, risk and return profiles, and financial policies (see, e.g., 

Hackbarth and Johnson, 2015; Reinartz and Schmid, 2016; Serfling, 2016; D’Acunto et al., 

2018; Jiang et al., 2023). This provides a fruitful avenue for future studies to explore these 
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dynamics. Understanding how managers’ real-operations decisions and their disclosure 

decisions, taken together, affect the firms’ future stock price crash risk may have interesting 

and useful implications. 

Besides the academic audience, our findings have practical implications for the decision-

making of both corporate managers and investors. Stock price crashes lead to large declines in 

firm valuation and represent a severe downside risk for both firms and their investors. As a 

result, corporate managers should take decisive actions to develop greater operating flexibility 

and improve their ability to succeed in a dynamic and unpredictable business environment. 

While our results suggest that, in general, firms should manage their operations in a flexible 

manner to navigate through economic downturns, it is critical to recognize the unique 

characteristics of each firm and the specific type of economic crisis they are confronting. For 

investors, their aversion to crash risk directly influences their portfolio selection and the 

valuation of stocks and derivatives (Harvey and Siddique, 2000; Conrad et al., 2013). The 

concern over elevated levels of crash risk is especially heightened for small investors who 

typically hold a limited number of stocks in their portfolios (Barber and Odean, 2013). Our 

results suggest that both corporate managers and investors would be wise to factor in firms’ 

operation flexibility into their decision-making processes.  
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Appendix A Model Solution 

In this appendix, we provide the set of optimality conditions for the solution of the model 

introduced in Section 2.1. Hackbarth and Johnson (2015) show that the firm’s value, in the 

inaction region, can be written as 𝐽(𝜃, 𝐾) = 𝜃 𝑉(𝑍) , where 𝑍 = 𝐾/𝜃 . 𝑉(𝑍)  satisfies an 

ordinary differential equation with general solution 𝑉(𝑍) = 𝐴𝑍𝛾 − 𝑆𝑍 + 𝐷𝑁𝑍𝜆𝑁  + 𝐷𝑃𝑍𝜆𝑃 , 

where the coefficients 𝐴 > 0, 𝑆 > 0, 𝜆𝑃 > 1 and 𝜆𝑁 < 0 are constants independent of scale 

adjustment frictions, and 𝐷𝑁  and 𝐷𝑃  are coefficients of the complementary solutions to the 

ordinary differential equation and are determined by boundary conditions that we elaborate 

below. 

In the absence of the expansion option, when firm productivity 𝜃 → ∞, i.e., when 𝑍 → 0, 

the firm’s value approaches the scenario without real options, i.e., 𝑉(𝑍) → 𝐴𝑍𝛾 − 𝑆𝑍. This 

implies 𝐷𝑁 = 0. Therefore, we may now assume 𝑉(𝑍) = 𝐴𝑍𝛾 − 𝑆𝑍 + 𝐷𝑃𝑍𝜆𝑃. 

Upon reaching the contraction boundary 𝑈, 𝑍 adjusts downwards to 𝐻. Pre- and post-

adjustment firm values differ by the adjustment frictions; therefore, we obtain the following 

value matching conditions (VMC): 

𝑉(𝐻) = 𝑉(𝑈) + 𝑓𝑈𝑈𝛾 + 𝑝𝑈(𝐻 − 𝑈). (A.1) 

The optimality for the choice of 𝐻 and 𝑈 yields their corresponding first order conditions, 

which can be obtained as smooth pasting conditions (SPC) below by functionally 

differentiating (A.1) with respect to 𝐻 and 𝑈, respectively: 

𝑉′(𝐻) = 𝑝𝑈, 

𝑉′(𝑈) = −𝛾𝑓𝑈𝑈𝛾−1 + 𝑝𝑈 . 

(A.2) 

(A.3) 

The three equations (A.1-3) determine the values of the unknown parameters 𝐷𝑁, 𝑈 and 

𝐻. As these are non-linear equations (especially in terms of 𝑈 and 𝐻), we employ a numerical 

algorithm to solve them. 

Appendix B Proofs 

We first prove a lemma below. 

Lemma 1. Let 𝑃 be a diffusion process with drift 𝜇 and volatility 𝜎, and let Φ(𝑃) be a 

function of 𝑃. The skewness of Φ conditional on 𝑃, in the interval Δ𝑡, is then given by 

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠Φ(𝑃) = 3𝜎
Φ′′

Φ′
√Δ𝑡 + 𝑜(√Δ𝑡), 

where Φ′ =
𝑑 Φ

𝑑 log P
, 𝑎𝑛𝑑 Φ′′ =

𝑑 Φ′

𝑑 log 𝑃
. 

Proof of Lemma 1. 
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The next-period increment of Φ can be expressed in terms of Δ𝑃 as ΔΦ = 𝑎 Δ log 𝑃 +

𝑏(Δ log 𝑃)2 + ⋯, where 𝑎 = Φ′ =
𝑑 Φ

𝑑 log 𝑃
, and 𝑏 =

1

2
Φ′′ =

1

2

𝑑 Φ′

𝑑 log 𝑃
. The skewness of ΔΦ, as a 

quadradic function of the normally distributed Δ log 𝑃 ~ 𝑁(𝜇Δ𝑡, 𝜎2Δt), can be easily obtained 

using the moments of normal distribution well known up to any order. Specifically, the 

skewness of ΔΦ  is 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠Φ = 𝐸 [(
ΔΦ−𝜇ΔΦ

𝜎ΔΦ
)

3

], where 𝜇ΔΦ = 𝐸[ΔΦ] , and 𝜎ΔΦ =

√𝐸[ΔΦ2] − 𝐸[ΔΦ]2. Let 𝑋 = Δ log 𝑃, then skewness is a function of moments of 𝑋. The first 

four moments are required in this exercise, and they are 𝐸[𝑋] = 𝜇Δ𝑡, 𝐸[𝑋2] = 𝜎2Δt +

𝜇2Δ𝑡2, 𝐸[𝑋3] = 3𝜇𝜎2Δ𝑡2 + 𝜇3Δ𝑡3, 𝐸[𝑋4] = 3𝜎4Δ𝑡2 + 6𝜇2𝜎2Δ𝑡3 + 𝜇4Δ𝑡4.  Therefore, the 

return skewness is eventually a function of Δ𝑡. Extracting the leading order of skewness in Δ𝑡, 

using a Taylor expansion in Δ𝑡, yields 𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠Φ(𝑃) = 6𝜎𝑏/𝑎√Δ𝑡 + 𝑜(√Δ𝑡). Substituting 

𝑎 = 𝑄′ and 𝑏 = 𝑄′′/2 into this equation completes the proof. ∎ 

Proof of Proposition 1. 

For the ease of notation, we label the quantities at the beginning of the interval Δ𝑡 with a 

subscript ‘0’, whereas the quantities without subscript represent values at the end of the period. 

The log return can then be written as 𝑙𝑅 = log[(𝐽 + Π0Δ𝑡)/𝐽0] = log 𝐽 + log(1 + Π0Δ𝑡/𝐽) −

log 𝐽0, the leading order skewness of which comes from the log 𝐽 term. Using 𝑄 = 𝐽/𝐾, we can 

write log 𝐽 = log 𝑄 + log 𝐾, and only the log 𝑄 term contributes to the skewness because 𝐾 

evolves deterministically, i.e., Δ log 𝐾𝑡 = −𝛿Δ𝑡. Therefore, the skewness of 𝑙𝑅 is equal to that 

of log 𝑄 in the leading order.  

By an application of Ito’s lemma, it can be seen that 𝑃 = 𝜃/𝐾 follows a diffusion process 

𝑑 log 𝑃𝑡 = 𝜇𝑃𝑑𝑡 + 𝜎𝑃𝑑𝑊𝑡 , where 𝜇𝑃 =  𝜇𝜃 − 𝜎𝜃
2/2 + 𝛿 , and 𝜎𝑃 = 𝜎𝜃 . Therefore, we may 

apply Lemma 1 to Φ = log 𝑄 to obtain the skewness of 𝑙𝑅. Differentiating with respect to 

log 𝑃, we find Φ′ = 𝑄′/𝑄, and Φ′′ = 𝑄′′/𝑄 − (𝑄′/𝑄)2. Therefore, according to Lemma 1,  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠𝑙𝑅(𝑃) = 3𝜎(𝑄′′/𝑄′ − 𝑄′/𝑄)√Δ𝑡 + 𝑜(√Δ𝑡). 

The negative skewness of the log return 𝑙𝑅 is obtained by reversing the sign of the above 

formula. This completes the proof of Proposition 1. ∎ 

Proof of Proposition 2. 

According to Appendix A, the value function is 𝑉(𝑍) = 𝐴𝑍𝛾 − 𝑆𝑍 + 𝐷𝑃𝑍𝜆𝑃 , where 

𝐴, 𝑆, 𝐷𝑃 > 0, 0 < 𝛾 < 1 and 𝜆𝑃 > 1. Hence the scaled firm value is 𝑄(𝑍) = 𝐽/𝐾 = 𝑉/𝑍 =

𝐴𝑍𝛾−1 − 𝑆 + 𝐷𝑃𝑍𝜆𝑃−1. In terms of the scaled productivity 𝑃 = 1/𝑍, we can write 𝑄(𝑃) =

𝐴𝑃1−𝛾 − 𝑆 + 𝐷𝑃𝑃1−𝜆𝑃. Applying Proposition 1 to this expression, we obtain 
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𝑁𝑆𝐾𝐸𝑊 = 3𝜎 [
𝐴(1 − 𝛾)𝑃1−𝛾 + 𝐷𝑃(1 − 𝜆𝑃)𝑃1−𝜆𝑃

𝐴𝑃1−𝛾 − 𝑆 + 𝐷𝑃𝑃1−𝜆𝑃

−
𝐴(1 − 𝛾)2𝑃1−𝛾 + 𝐷𝑃(1 − 𝜆𝑃)2𝑃1−𝜆𝑃

𝐴(1 − 𝛾)𝑃1−𝛾 + 𝐷𝑃(1 − 𝜆𝑃)𝑃1−𝜆𝑃
]. 

Denote the 𝐷𝑃  dependence of the above expression as 3𝜎 ⋅ 𝑁𝑆(𝐷𝑃) , then we may 

decompose the above as 𝑁𝑆𝐾𝐸𝑊 = 𝑁𝐾𝑆𝐸𝑊𝐴𝐼𝑃 + 𝑁𝑆𝐾𝐸𝑊𝐶𝑂 , where 𝑁𝐾𝑆𝐸𝑊𝐴𝐼𝑃 = 3𝜎 ⋅

𝑁𝑆(0) and 𝑁𝐾𝑆𝐸𝑊𝐶𝑂 = 3𝜎[𝑁𝑆(𝐷𝑃) − 𝑁𝑆(0)]. We now prove the signs and monotonicity of 

these components with respect to 𝑃 as follows. 

Setting 𝐷𝑃 = 0, we obtain 

𝑁𝑆(0) =
𝐴(1 − 𝛾)𝑃1−𝛾

𝐴𝑃1−𝛾 − 𝑆
− (1 − 𝛾) =

(1 − 𝛾)𝑆

𝐴𝑃1−𝛾 − 𝑆
 , 

which is clearly positive and decreasing in 𝑃. The positivity of the denominator 𝐴𝑃1−𝛾 − 𝑆  is 

required by the firm’s value being positive. This demonstrates that 𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃(𝑃) > 0 and 

𝑁𝑆𝐾𝐸𝑊𝐴𝐼𝑃
′ (𝑃) < 0. 

The case for 𝑁𝑆(𝐷𝑃) − 𝑁𝑆(0) is a bit more algebraically involving. We split it into three terms 

𝑁𝑆(𝐷𝑃) − 𝑁𝑆(0) = 𝑎 + 𝑏 + 𝑐, where 

𝑎 =
𝐴(1 − 𝛾)𝑃1−𝛾

𝐴𝑃1−𝛾 − 𝑆 + 𝐷𝑃𝑃1−𝜆𝑃
−

𝐴(1 − 𝛾)𝑃1−𝛾

𝐴𝑃1−𝛾 − 𝑆
, 

𝑏 =
𝐷𝑃(1 − 𝜆𝑃)𝑃1−𝜆𝑃

𝐴𝑃1−𝛾 − 𝑆 + 𝐷𝑃𝑃1−𝜆𝑃
, and 

𝑐 = (1 − 𝛾) −
𝐴(1 − 𝛾)2𝑃1−𝛾 + 𝐷𝑃(1 − 𝜆𝑃)2𝑃1−𝜆𝑃

𝐴(1 − 𝛾)𝑃1−𝛾 + 𝐷𝑃(1 − 𝜆𝑃)𝑃1−𝜆𝑃
 . 

𝑎 can be rewritten as  

𝑎 =
𝐴(1 − 𝛾)𝑃1−𝛾

𝐴𝑃1−𝛾 − 𝑆 + 𝐷𝑃𝑃1−𝜆𝑃
−

𝐴(1 − 𝛾)𝑃1−𝛾

𝐴𝑃1−𝛾 − 𝑆
= − [

𝐴(1 − 𝛾)𝑃1−𝛾

𝐴𝑃1−𝛾 − 𝑆
] [

𝐷𝑃
𝑃1−𝜆𝑃

𝐴𝑃1−𝛾 − 𝑆

1 + 𝐷𝑃
𝑃1−𝜆𝑃

𝐴𝑃1−𝛾 − 𝑆

] . 

The terms 
𝑃1−𝛾

𝐴𝑃1−𝛾−𝑆
 and 

𝑃1−𝜆𝑃

𝐴𝑃1−𝛾−𝑆
 are both positive and decreasing in 𝑃. Therefore, both terms in 

the square brackets are positive and decreasing in 𝑃, hence is their product. Thus 𝑎 is negative 

and increasing in 𝑃, i.e., 𝑎 < 0 and 𝑎′ > 0. 

𝑏 can be rewritten as  

𝑏 = (1 − 𝜆𝑃) [
𝐷𝑃

𝑃1−𝜆𝑃

𝐴𝑃1−𝛾 − 𝑆

1 + 𝐷𝑃
𝑃1−𝜆𝑃

𝐴𝑃1−𝛾 − 𝑆

] . 
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The term in the square bracket is exactly the same as the second square bracket of 𝑎, and hence 

is positive and decreasing in 𝑃. 𝜆𝑃 > 1 implies 𝑏 is negative and increasing in 𝑃, i.e., 𝑏 < 0 

and 𝑏′ > 0. 

Finally, 𝑐 can be rewritten as 

𝑐 = (1 − 𝜆𝑃) [
𝐷𝑃(𝜆𝑃 − 𝛾)

𝐴(1 − 𝛾)𝑃𝜆𝑃−𝛾 + 𝐷𝑃(1 − 𝜆𝑃)
]. 

𝛾 < 1 < 𝜆𝑃 implies that the term in the square bracket is positive and decreasing, and that 1 −

𝜆𝑃 < 0. To guarantee the positivity of the denominator in the square bracket, we have used the 

fact that 𝑄′ > 0 , which in turn derives from the assumption 𝜕𝐽/𝜕𝜃 > 0 , as proposed by 

Hackbarth and Johnson (2015). Therefore, 𝑐 is negative and increasing in 𝑃, i.e., 𝑐 < 0 and 

𝑐′ > 0. 

Adding the above three summands 𝑎, 𝑏  and 𝑐  together yields 𝑁𝑆𝐾𝐸𝑊𝐶𝑂(𝑃) < 0  and 

𝑁𝑆𝐾𝐸𝑊𝐶𝑂
′ (𝑃) > 0. ∎ 

Appendix C Additional Tables 

Table C.1 gives the definition of variables used in our empirical tests. 

Table C.1 Variable Definitions 

Stock price crash risk measures 

For each firm-year, we assign weekly returns to the 12-month period ending three months after the 

fiscal year-end, and obtain firm-specific weekly returns (𝑊𝑗.𝜏 ) as log(1+residual), where the 

residuals are estimated from either of the two following expanded market models: 

𝑟𝑗,𝜏 = 𝛼𝑗 + 𝛽1,𝑗𝑟𝑚,𝜏−2 + 𝛽2,𝑗𝑟𝑚,𝜏−1 + 𝛽3,𝑗𝑟𝑚,𝜏 + 𝛽4,𝑗𝑟𝑚,𝜏+1 + 𝛽5,𝑗𝑟𝑚,𝜏+2 + 𝜖𝑗,𝜏 (M1) 

𝑟𝑗,𝜏 = 𝛼𝑗 + 𝛽1,𝑗𝑟𝑚,𝜏−1 + 𝛽2,𝑗𝑟𝑖,𝜏−1 + 𝛽3,𝑗𝑟𝑚,𝜏 + 𝛽4,𝑗𝑟𝑖,𝜏 + 𝛽5,𝑗𝑟𝑚,𝜏+1 + 𝛽6,𝑗𝑟𝑖,𝜏+1 + 𝜖𝑗,𝜏 (M2) 

For market model (M1), we then compute NSKEW as the negative skewness of W, DUVOL as the 

natural logarithm of the ratio of the variances of down-week to up-week firm-specific weekly 

returns, and CRASH as an indicator for a crash event during the fiscal year. Here, the down and up 

weeks are those with W below and above, respectively, its annual mean; a fiscal year experiences 

a crash event if at least one value of W over the fiscal year falls 3.09 or more standard deviations 

below its annual mean.  

NSKEW2, DUVOL2 and CRASH2 are obtained similarly for firm-specific weekly returns under 

market model (M2). 

Operating flexibility measures 

We define firm 𝑗 ’s operating flexibility in fiscal year 𝑡  as 𝐹𝐿𝐸𝑋𝑗,𝑡 = 1/𝐼𝑁𝐹𝐿𝐸𝑋𝑗,𝑡 , where 

𝐼𝑁𝐹𝐿𝐸𝑋𝑗,𝑡 is the maximum level of operational costs over sales scaled by the volatility of the sales 

over assets annual growth rates, over the 20-year rolling window prior to fiscal year 𝑡. FLEX2 is 

obtained similarly but uses the window from the firm’s beginning to fiscal year 𝑡; on the other 

hand, FLEX3 uses the firm’s entire sample period as the estimation window. 

Control variables 

SIGMA and RET are the standard deviation and mean, respectively, of the firm-specific weekly 

returns, under market model (M1), over the 12-month period ending three months after the fiscal 

year-end. l.NSKEW is the lagged value of NSKEW. SIGMA2, RET2 and l.NSKEW2 are the 

corresponding variables under market model (M2). 
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DTURN is the average monthly share turnover over the current fiscal year minus the average 

monthly share turnover over the previous fiscal year. The monthly share turnover is calculated as 

the monthly trading volume divided by the total number of shares outstanding at the end of the 

month. 

SIZE is the natural logarithm of the market value of equity (csho×prcc_f, Compustat variable 

names, hereafter). 

MB is the market value of equity divided by the book value of equity (ceq). 

LEV is the total long-term debt (dltt) scaled by total assets (at). 

ROA is the income before extraordinary items (ib) divided by total assets (at). 

ACCM is the absolute value of discretionary accruals estimated from the modified Jones model 

following the procedure of Hutton et al. (2009). The definition of total accruals follows the balance 

sheet approach of Dechow et al. (2008). 

Conditioning variables 

TobinQ is Tobin’s Q ratio defined as (at+ csho×prcc_f-ceq)/at. 

GPOA is the ratio of gross profits (gp) to total assets (at). 

QFC is the quasi-fixed costs estimated according to equation (9) of Gu et al. (2018). 

OPCS is the ratio of operational costs (cogs + xsga) to sales (sale). 

 

Table C.2 reports the correlations between different measures of the major variables of 

interest. 

Table C.2 Correlations between different measures of the major variables of interest 

This table reports the correlations between different measures of operating flexibility (Panel A), and the 

correlations between different measures of stock price crash risk (Panel B). See Table C.1 for more 

details about the definition of these variables. The stars represent levels of statistical significance: *** 

p<0.01, ** p<0.05, * p<0.1. 

Panel A: Correlations between measures of operating flexibility 

 Variables (1) (2) (3) 

(1) FLEX 1.00   

(2) FLEX2 0.94*** 1.00  

(3) FLEX3 0.79*** 0.85*** 1.00 

    

 

Panel B: Correlations between measures of stock price crash risk 

Variables (1) (2) (3) (4) (5) (6) 

(1) NSKEW 1.00      

(2) DUVOL 0.96*** 1.00     

(3) CRASH 0.56*** 0.52*** 1.00    

(4) NSKEW2 0.92***   1.00   

(5) DUVOL2  0.89***  0.96*** 1.00  

(6) CRASH2   0.85*** 0.60*** 0.55*** 1.00 

 


